Apache Singa distributed deep learning platform
SINGA is a general distributed deep learning platform for training big deep learning models over large datasets. It is designed with an intuitive programming model based on the layer abstraction. A variety of popular deep learning models are supported, namely feed-forward models including convolutional neural networks (CNN), energy models like restricted Boltzmann machine (RBM), and recurrent neural networks (RNN).
SINGA architecture is sufficiently flexible to run synchronous, asynchronous and hybrid training frameworks. SINGA also supports different neural net partitioning schemes to parallelize the training of large models, namely partitioning on batch dimension, feature dimension or hybrid partitioning.
Training a deep learning model is to find the optimal parameters involved in the transformation functions that generate good features for specific tasks. The goodness of a set of parameters is measured by a loss function, e.g., Cross-Entropy Loss. Since the loss functions are usually non-linear and non-convex, it is difficult to get a closed form solution. Typically, people use the stochastic gradient descent (SGD) algorithm, which randomly initializes the parameters and then iteratively updates them to reduce the loss as shown above.
To submit a job in SINGA (i.e., training a deep learning model), users pass the job configuration to SINGA driver in the main function. The job configuration specifies the four major components in Figure 2,
- NeuralNet describing the neural net structure with the detailed layer setting and their connections;
- TrainOneBatch algorithm which is tailored for different model categories;
- Updater defining the protocol for updating parameters at the server side;
- Cluster Topology specifying the distributed architecture of workers and servers.
This process is like the job submission in Hadoop, where users configure their jobs in the main function to set the mapper, reducer, etc. In Hadoop, users can configure their jobs with their own (or built-in) mapper and reducer; in SINGA, users can configure their jobs with their own (or built-in) layer, updater, etc.
For Quick Start & Programming guide refer link below
- https://svn.apache.org/repos/infra/websites/production/singa/content/docs/quick-start.html
- https://svn.apache.org/repos/infra/websites/production/singa/content/docs/programming-guide.html
Additional Resources
- Trending Skill : Deep Learning Course Collection
- TOP 22 Most Popular Deep Learning Courses on Udemy
- TOP 15 Udemy Artificial Intelligence Courses
- TOP 25 Udemy Machine Learning courses
- TOP 25 Udemy Machine Learning courses (Level – Intermediate)
- 17 Algorithms Machine Learning Engineers Need to Know
- ULTIMATE Guide to Data Science Courses (Over 65+ courses covered)
- Applied AI: Artificial Intelligence with IBM Watson Specialization
- Python Curated Course Collection
- AI Foundations for Everyone Specialization from IBM
- ULTIMATE GUIDE to Coursera Specializations That Will Make Your Career Better (Over 100+ Specializations covered)
Like this post? Don’t forget to share it!
Average Rating