Machine learning is the study of algorithms and mathematical models that computer systems use to progressively improve their performance on a specific task. Machine learning algorithms build a mathematical model of sample data, known as “training data”, in order to make predictions or decisions without being explicitly programmed to perform the task.The types of machine learning algorithms differ in their approach, the type of data they input and output, and the type of task or problem that they are intended to solve.Supervised learning algorithms build a mathematical model of a set of data that contains both the inputs and the desired outputs.Unsupervised learning algorithms take a set of data that contains only inputs, and find structure in the data, like grouping or clustering of data points. The algorithms therefore learn from test data that has not been labeled, classified or categorized.
Ninety percent of all the world’s data has been created in the last two years. Business around the world generate approximately 450 billion transactions a day. The amount of data collected by all organizations is approximately 2.5 exabytes a day. That number doubles every month.That means,there is always exponential need for Machine learning engineers to build, implement, and maintain machine learning systems,algorithms in technology products with focus on machine learning system reliability, performance, and scalability.
TAKE ACTION AND START ENROLLING TODAY! All of the below listed courses are running at discount of about 90%. And for any reason you are unhappy with the course, Udemy has a 30 day Money Back Refund Policy, So no questions asked and no Risk to you. You got nothing to lose.
Quick Snapshot
[bctt tweet=”Check out TOP 25 Udemy Machine Learning courses!” via=”no”]
Complete hands-on machine learning tutorial with data science, Tensorflow, artificial intelligence, and neural networks.
This comprehensive machine learning tutorial includes over 80 lectures spanning 12 hours of video, and most topics include hands-on Python code examples you can use for reference and for practice.
Created by : Sundog Education by Frank Kane
4.7 (378 ratings)
The most comprehensive course on Machine Learning for iOS development. Master building smart apps iOS Swift 4
Key topics that you’ll learn in this course:
Created by : Yohann Taieb
The First Course in a Series for Mastering Python for Machine Learning Engineers.
This course is an applied course on machine learning. Here’ are a few items you’ll learn:
Created by: Mike West
Start building more intelligent apps with Machine Learning. Take advantage of this new foundational framework!
Key topics that you’ll learn in this course:
Created by: Devslopes by Mark Price
4.6 (210 ratings)
A Prerequisite for Tensorflow on Google’s Cloud Platform for Data Engineers.
This course will show you the basics of machine learning for data engineers. The course is geared towards answering questions for the Google Certified Data Engineering exam.
This is NOT a general course or introduction to machine learning. This is a very focused course for learning the concepts you’ll need to know to pass the Google Certified Data Engineering Exam.
At this juncture, the Google Certified Data Engineer is the only real world certification for data and machine learning engineers.
Created by: Mike West
3.9 (130 ratings)
Mastering Machine Learning Algorithms including Neural Networks with Numpy, Pandas, Matplotlib, Seaborn and Scikit-Learn.
This course will help you to understand the main machine learning algorithms using Python, and how to apply them in your own projects.
For starters, you will learn about the main scientific libraries in Python for data analysis such as Numpy, Pandas, Matplotlib and Seaborn. You’ll then learn about artificial neural networks and how to work with machine learning models using them.
You obtain a solid background in machine learning and be able to apply that knowledge directly in your own programs.This course helps you to understand the difficult concepts of Machine learning in a unique way. Rather than just focusing on complex maths explanaitons, simpler explanations with charts, and info displays are included.
Many examples and genuinely useful code snippets are also included to make it even easier to learn and understand.
Created by: Tim Buchalka’s Learn Programming Academy, CARLOS QUIROS
4.1 (111 ratings)
Learn 16 Machine Learning Algorithms in a Fun and Easy along with Practical Python Labs using Keras.
This is the ONLY course on Udemy which will get you implementing some of the most common machine learning algorithms on real data in Python. Plus, you will gain exposure to neural networks (using the H2o framework) and some of the most common deep learning algorithms with the Keras package.
We designed this course for anyone who wants to learn the state of the art in Machine learning in a simple and fun way without learning complex math or boring explanations. Each theoretically lecture is uniquely designed using whiteboard animations which can maximize engagement in the lectures and improves knowledge retention. This ensures that you absorb more content than you would traditionally would watching other theoretical videos and or books on this subject.
This is how the course is structured:
Created by : Augmented Startups, Minerva Singh
4.2 (87 ratings)
Introduction to machine learning in the cloud with Azure Machine Learning.
Azure Machine Learning is a cloud-based data science and machine learning service which is easy to use and is robust and scalable like other Azure cloud services. It provides visual and collaborative tools to create a predictive model which will be ready-to-consume on web services without worrying about the hardware or the VMs which perform the calculations.
The advantage of Azure ML is that it provides a UI-based interface and pre-defined algorithms that can be used to create a training model. And it also supports various programming and scripting languages like R and Python.
In this course, we will discuss Azure Machine Learning in detail. You will learn what features it provides and how it is used. We will explore how to process some real-world datasets and find some patterns in that dataset.
This course teaches you how to design, deploy, configure and manage your machine learning models with Azure Machine Learning. The course will start with an introduction to the Azure ML toolset and features provided by it and then dive deeper into building some machine learning models based on some real-world problems.
Created by: TetraNoodle Team, Manuj Aggarwal, Ruchika Dare
4.5 (62 ratings)
SQL Server, R, Python, TSQL, Data Analysis, Machine Learning Services, Data Science, Data Visualization, Statistics.
Machine Learning Basics with SQL Server 2017, R and Python is a course in which a student having no experience / awareness of Machine Learning / R / Python / SQL Server 2017 Machine Learning Services would be trained step by step to a level where the student is confident to independently work independently with each of them.
Course includes practical hands-on queries with explanation and analysis, and theoretical coverage of key concepts. This is a fast track course to learn practical query development on 2 programming languages i.e. R and Python with T-SQL in the scope of SQL Server, using the latest version of SQL Server – 2017. No prior experience of working with R / Python is required. Even installation of SQL Server 2017 Machine Learning Services, R, Python, and Visual Studio 2017 Data Science Applications is covered in the course.
PS: This course does not teach development of machine learning models and/or algorithms. This course teaches fundamental theory and data science using R and Python in SQL Server Machine Learning Services so that a student can pursue Machine Learning confidently and comfortably.
Created by: Siddharth Mehta
This course provides you with more than 10 hours of highly valuable content. Together we address theory as well as apply this knowlege in practice because only applied knowlege is real knowledge.
Together we will apply various machine learning algorithms and deep learning neural networks in practice. All other resources you need to follow along can be acquired for free and will be shown at the beginning of the couse.
After finishing the course you have acquired a solid foundation which you could leverage in your future career.
Created by : Daniel We
3.3 (45 ratings)
Get up-and-running via Machine Learning with Python’s insightful projects.
This course video is a unique blend of projects that teach you what Machine Learning is all about and how you can implement machine learning concepts in practice. Six different independent projects will help you master machine learning in Python. The video will cover concepts such as classification, regression, clustering, and more, all the while working with different kinds of databases. By the end of the course, you will have learned to apply various machine learning algorithms and will have mastered Python’s packages and libraries to facilitate computation. You will be able to implement your own machine learning models after taking this course.
Created by: Packt Publishing
3.0 (40 ratings)
Learn to implement classification and clustering algorithms using MATLAB with practical examples, projects and datasets.
This course is for you if you want to have a real feel of the Machine Learning techniques without having to learn all the complicated maths. Additionally, this course is also for you if you have had previous hours and hours of machine learning theory but could never got a change or figure out how to implement and solve data science problems with it.
The approach in this course is very practical and we will start everything from very scratch. We will immediately start coding after a couple of introductory tutorials and we try to keep the theory to bare minimal. All the coding will be done in MATLAB which is one of the fundamental programming languages for engineer and science students and is frequently used by top data science research groups world wide.
Below is the brief outline of this course.
Segment 1: Introduction to course
Segment 2: Data preprocessing
Segment 3: Classification Algorithms in MATLAB
Segment 4: Clustering Algorithms in MATLAB
Segment 5: Dimensionality Reduction
Segment 6: Project: Malware Analysis
Created by: Nouman Azam
4.5 (35 ratings)
This webinar was conducted on 31st March 2018 with Rohit, CEO Paripath Inc.
We start with Electronic design automation and what is machine learning. Then we will give overall introduction to categories of machine learning (supervised and unsupervised learning) and go about discussing that a little bit. Then we talk about the frameworks which are available today, like general purpose, big data processing and deep-learning, and which one is suitable for design automation. This is Machine Learning in general with a focus on CAD, EDA and VLSI flows.
Then we talk about Applied Theory (data sets, data analysis like data augmentation, exploratory data analysis, normalization, randomization), as to what are the terms and terminologies and what do we do with that, accuracy, how do we develop the algorithm, essentially the things that are required to develop the solution flow, lets say, you as the company wants to add a feature in your product using machine learning, what you would be doing, and what your flow will look like and this is what is shown as pre-cursor of flight theory as what you should be looking out.
And then we start with regression, which is first in supervised learning. In the regression, we will give couple of example, like first is resistance estimation, second is polynomial regression which is capacitance estimation. For resistance estimation, we have the dataset from 20nm technology. And finally, we go on to create a linear classifier using logistic regression.
Next will be dimensional reduction, meaning, you have a large dataset and how to you reduce the size of that so that you can run on a laptop or even on your cell phone. Then there is a big example of that. Everything has mathematics behind that, this wont be a part of the webinar.
Created by: Kunal Ghosh, Rohit Sharma
4.0 (30 ratings)
Learn to build decision trees for applied machine learning from scratch in Python.
This course covers both fundamentals of decision tree algorithms such as ID3, C4.5, CART, Regression Trees and its hands-on practical applications. We will create our own decision tree framework from scratch in Python. Meanwhile, step by step exercises guide you to understand concepts clearly.
This course appeals to ones who interested in Machine Learning, Data Science and Data Mining.
Created by: Sefik Ilkin Serengil
62% of UX designers now use AI to enhance their workflows. Artificial intelligence (AI) rapidly…
The integration of artificial intelligence into graphic design through tools like Adobe Photoshop can save…
The cryptocurrency trading world has grown significantly in recent years, with automation playing a key…
The non-fungible token (NFT) market has witnessed explosive growth over the past few years, transforming…
There are few things as valuable to a business as well-designed software. Organizations today rely…
The cryptocurrency industry is being reshaped by the fusion of blockchain technology and artificial intelligence…
This website uses cookies.