We have already looked at TOP 100 Coursera Specializations and today we will check out specialization on how to build and train neural networks using TensorFlow.
Coursera Specialization is a series of courses that helps you master a skill. To begin, you can enroll in the Specialization directly, or review its courses and choose the one you’d like to start with. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. You can either complete just one course or you can pause your learning or end your subscription at any time.
In this specialization,you’ll learn how to teach machines to understand, analyze, and respond to human speech with natural language processing systems. Learn to process text, represent sentences as vectors, and input data to a neural network.Check them out, and start enrolling today!
This specialization is from deeplearning.ai,you’ll explore exciting opportunities for AI applications.AI is already transforming industries across the world. After finishing this Specialization, you’ll be able to apply your new TensorFlow skills to a wide range of problems and projects.
The Machine Learning course and Deep Learning Specialization from Andrew Ng teach the most important and foundational principles of Machine Learning and Deep Learning. This new deeplearning.ai TensorFlow Specialization teaches you how to use TensorFlow to implement those principles so that you can start building and applying scalable models to real-world problems. To develop a deeper understanding of how neural networks work, we recommend that you take the Deep Learning Specialization.
This course is part of the upcoming Machine Learning in Tensorflow Specialization and will teach you best practices for using TensorFlow, a popular open-source framework for machine learning.
You will explore how to work with real-world images in different shapes and sizes, visualize the journey of an image through convolutions to understand how a computer “sees” information, plot loss and accuracy, and explore strategies to prevent overfitting, including augmentation and dropout. Finally, Course 2 will introduce you to transfer learning and how learned features can be extracted from models.
You will learn to process text, including tokenizing and representing sentences as vectors, so that they can be input to a neural network. You’ll also learn to apply RNNs, GRUs, and LSTMs in TensorFlow. Finally, you’ll get to train an LSTM on existing text to create original poetry!
Like this post? Don’t forget to share it!
There are few things as valuable to a business as well-designed software. Organizations today rely…
The cryptocurrency industry is being reshaped by the fusion of blockchain technology and artificial intelligence…
Introduction Artificial Intelligence (AI) has also found its relevance in graphic design and is quickly…
Imagine a world where the brilliance of Artificial Intelligence (AI) meets the unbreakable security of…
In today’s fast-paced digital landscape, automation is not just a luxury but a necessity for…
The world of casino gaming has leveraged the emerging technology advancements to create immersive and…
This website uses cookies.